Welcome Guest [Log In] [Register]
We hope you enjoy your visit.


You're currently viewing our forum as a guest. This means you are limited to certain areas of the board and there are some features you can't use. If you join our community, you'll be able to access member-only sections, and use many member-only features such as customizing your profile, sending personal messages, and voting in polls. Registration is simple, fast, and completely free.


Join our community!


If you're already a member please log in to your account to access all of our features:

Username:   Password:
Add Reply
Good News Stories
Topic Started: Jan 4 2014, 12:36 AM (331 Views)
Brewster
Member Avatar
Fire & Ice Senior Diplomat
[ * ]
So many stories about Global Warming are Bad News - Climate Disasters, Governmental Inaction, etc.

It's hard not to become totally pessimistic.

But then there's stories like these:


Climate Progress
 
13 Major Clean Energy Breakthroughs Of 2013

1. Using salt to keep producing solar power even when the sun goes down. Helped along by the Department of Energy’s loan program, Solana’s massive 280 megawatt (MW) solar plant came online in Arizona this October, with one unique distinction: the plant will use a ‘salt battery’ that will allow it to keep generating electricity even when the sun isn’t shining. Not only is this a first for the United States in terms of thermal energy storage, the Solana plant is also the largest in the world to use to use parabolic trough mirrors to concentrate solar energy.

2. Electric vehicle batteries that can also power buildings.

Nissan’s groundbreaking ‘Vehicle-To-Building‘ technology will enable companies to regulate their electricity needs by tapping into EVs plugged into their garages during times of peak demand. Then, when demand is low, electricity flows back to the vehicles, ensuring they’re charged for the drive home. With Nissan’s system, up to six electric vehicles can be plugged into a building at one time. As more forms of renewable energy is added to the grid, storage innovations like this will help them all work together to provide reliable power.

3. The next generation of wind turbines is a gamechanger. May of 2013 brought the arrival of GE’s Brilliant line of wind turbines, which bring two technologies within the turbines to address storage and intermittency concerns. An “industrial internet” communicates with grid operators, to predict wind availability and power needs, and to optimally position the turbine. Grid-scale batteries built into the turbines store power when the wind is blowing but the electricity isn’t needed — then feed it into the grid as demand comes along, smoothing out fluctuations in electricity supply. It’s a more efficient solution to demand peaks than fossil fuel plants, making it attractive even from a purely business aspect. Fifty-nine of the turbines are headed for Michigan, and two more will arrive in Texas.

4. Solar electricity hits grid parity with coal. A single solar photovoltaic (PV) cell cost $76.67 per watt back in 1977, then fell off a cliff. Bloomberg Energy Finance forecast the price would reach $0.74 per watt in 2013 and as of the first quarter of this year, they were actually selling for $0.64 per watt. That cuts down on solar’s installation costs — and since the sunlight is free, lower installation costs mean lower electricity prices. And in 2013, they hit grid parity with coal: in February, a southwestern utility, agreed to purchase electricity from a New Mexico solar project for less than the going rate for a new coal plant. Unsubsidized solar power reached grid parity in countries such as Italy and India. And solar installations have boomed worldwide and here in America, as the lower module costs have driven down installation prices.

5. Advancing renewable energy from ocean waves. With the nation’s first commercial, grid-connected underwater tidal turbine successfully generating renewable energy off the coast of Maine for a year, the Ocean Renewable Power Company (ORPC) has its sights set on big growth. The project has invested more than $21 million into the Maine economy and an environmental assessment in March found no detrimental impact on the marine environment. With help from the Department of Energy, the project is set to deploy two more devices in 2014. In November, ORPC was chosen to manage a wave-energy conversion project in remote Yakutat, Alaska. And a Japanese delegation visited the project this year as the country seeks to produce 30 percent of its total power offshore by 2030.

6. Harnessing ocean waves to produce fresh water.

This year saw the announcement of Carnegie Wave Energy’s upcoming desalination plant near Perth, Australia. It will use the company’s underwater buoy technology to harness ocean wave force to pressurize the water, cutting out the fossil-fuel-powered electric pumps that usually force water through the membrane in the desalination process. The resulting system — “a world first” — will be carbon-free, and efficient in terms of both energy and cost. Plan details were completed in October, the manufacturing contract was awarded in November, and when it’s done, the plant will supply 55 billion litters of fresh drinking water per year.

7. Ultra-thin solar cells that break efficiency records. Conversion efficiency is the amount of light hitting the solar cell that’s actually changed into electricity, and it’s typically 18.7 percent and 24 percent. But Alta Devices, a Silicon Valley solar manufacturer, set a new record of 30.8 percent conversion efficiency this year. Its method is more expensive, but the result is a durable and extremely thin solar cell that can generate a lot of electricity from a small surface area. That makes Alta’s cells perfect for small and portable electronic devices like smartphones and tablets, and the company is in discussions to apply them to mobile phones, smoke detectors, door alarms, computer watches, remote controls, and more.

8. Batteries that are safer, lighter, and store more power. Abundant and cost-effective storage technology will be crucial for a clean energy economy — no where more so than with electric cars. But right now batteries don’t always hold enough charge to power automobiles for extended periods, and they add significantly to bulk and cost. But at the start of 2013, researchers at Oak Ridge National Laboratory successfully demonstrated a new lithium-ion battery technology that can store far more power in a much smaller size, and that’s safer and less prone to shorts. They used nanotechnology to create an electrolyte that’s solid, ultra-thin, and porous, and they also combined the approach with lithium-sulfur battery technology, which could further enhance cost-effectiveness.

9. New age offshore wind turbines that float. Offshore areas are prime real estate for wind farms, but standard turbines require lots of construction and are limited to waters 60 meters deep or less. But Statoil, the Norwegian-based oil and gas company, began work this year on a hub of floating wind turbines off the coast of Scotland. The turbines merely require a few cables to keep them anchored, and can be placed in water up to 700 meters. That could vastly expand the amount of economically practical offshore wind power. The hub off Scotland will be the largest floating wind farm in the world — and two floating turbines are planned off the coast of Fukushima, Japan, along with the world’s first floating electrical substation.

10. Cutting electricity bills with direct current power.

Alternating current (AC), rather than direct current (DC) is the dominant standard for electricity use. But DC current has its own advantages: its cheap, efficient, works better with solar panels and wind turbines, and doesn’t require adaptors that waste energy as heat. Facebook, JPMorgan, Sprint, Boeing, and Bank of America have all built datacenters that rely on DC power, since DC-powered datacenters are 20 percent more efficient, cost 30 percent less, and require 25 to 40 percent less floorspace. On the residential level, new USB technology will soon be able to deliver 100 watts of power, spreading DC power to ever more low voltage personal electronics, and saving homes inefficiency costs in their electricity bill.

11. Commercial production of clean energy from plant waste is finally here. Ethanol derived from corn, once held up as a climate-friendly alternative to gasoline, is under increasing fire. Many experts believe it drives up food prices, and studies disagree on whether it actually releases any less carbon dioxide when its full life cycle is accounted for. Cellulosic biofuels, promise to get around those hurdles, and 2013 may be when the industry finally turned the corner. INOES Bio’s cellulosic ethanol plant in Florida and KiOR’s cellulosic plant in Mississippi began commercial production this year. Two more cellulosic plants are headed for Iowa, and yet another’s being constructed in Kansas. The industry says 2014′s proposed cellulosic fuel mandate of 17 million gallons will be easily met.

12. Innovative financing bringing clean energy to more people. In DC, the first ever property-assessed clean energy (PACE) project allows investments in efficiency and renewables to be repaid through a special tax levied on the property, which lowers the risk for owners. Crowdfunding for clean energy projects made major strides bringing decentralized renewable energy to more people — particularly the world’s poor — and Solar Mosaic is pioneering crowdfunding to pool community investments in solar in the United States. California figured out how to allow customers who aren’t property owners or who don’t have a suitable roof for solar — that’s 75 percent of the state — to nonetheless purchase up to 100 percent clean energy for their home or business. Minnesota advanced its community solar gardens program, modeled after Colorado’s successful initiative. And Washington, DC voted to bring in virtual net metering, which allows people to buy a portion of a larger solar or wind project, and then have their portion of the electricity sold or credited back to the grid on their behalf, reducing the bill.

13. Wind power is now competitive with fossil fuels. “We’re now seeing power agreements being signed with wind farms at as low as $25 per megawatt-hour,” Stephen Byrd, Morgan Stanley’s Head of North American Equity Research for Power & Utilities and Clean Energy, told the Columbia Energy Symposium in late November. Byrd explained that wind’s ongoing variable costs are negligible, which means an owner can bring down the cost of power purchase agreements by spreading the up-front investment over as many units as possible. As a result, larger wind farms in the Midwest are confronting coal plants in the Powder River Basin with “fairly vicious competition.” And even without the production tax credit, wind can still undercut many natural gas plants. A clear sign of its viability, wind power currently meets 25 percent of Iowa’s energy needs and is projected to reach a whopping 50 percent by 2018.
LINK - with Links

These stories are Good News in nearly every way - it is obvious we have the technology to produce all the clean, cheap power the world can ever use. We CAN turn Global Warming around, and put North America into the technology lead in the process.

The only flaw is that they're still small installations, and we need these technologies unleashed on a large scale NOW.

Taking the huge subsidies and tax breaks away from all energy sources and let Free Enterprise pick the winners would probably do it, and save our countries Trillion$.

Applying half the money that is being given to Fossil Fuels to Renewable projects that have proven records of success in the market would guarantee we could do it, and still save our countries a fortune.

So How about it, Right Wingers? You keep crying that you want Governments to spend less, and expand manufacturing for more jobs - here's your big chance - cut those subsidies, let the Free Market pick the winners!
Edited by Brewster, Jan 4 2014, 12:46 AM.
Offline Profile Quote Post Goto Top
 
Neutral
Member Avatar
Fire & Ice Senior Diplomat
[ * ]
Why do you post in green? Does that save the world in some way?
Is that ship still stuck? Two of them now right?
Offline Profile Quote Post Goto Top
 
Neutral
Member Avatar
Fire & Ice Senior Diplomat
[ * ]
Antarctic ice shelf melt 'lowest EVER recorded, global warming is NOT eroding it'
Offline Profile Quote Post Goto Top
 
Mountainrivers
Member Avatar
Fire & Ice Senior Diplomat
[ * ]
Neutral
Jan 4 2014, 12:42 AM
Why do you post in green? Does that save the world in some way?
Is that ship still stuck? Two of them now right?
Diversion!
Offline Profile Quote Post Goto Top
 
Neutral
Member Avatar
Fire & Ice Senior Diplomat
[ * ]
Just questions.
Offline Profile Quote Post Goto Top
 
colo_crawdad
Member Avatar
Fire & Ice Senior Diplomat
[ * ]
Brew,

Thanks for the good news. It is great to read of the advancements being made that just might save mankind from itself.
Offline Profile Quote Post Goto Top
 
Neutral
Member Avatar
Fire & Ice Senior Diplomat
[ * ]
I think mine was the best news though.
Offline Profile Quote Post Goto Top
 
Brewster
Member Avatar
Fire & Ice Senior Diplomat
[ * ]
What's Good News for some is Bad News for others:

Grist
 
Solar panels could destroy U.S. utilities, according to U.S. utilities

By David Roberts

Solar power and other distributed renewable energy technologies could lay waste to U.S. power utilities and burn the utility business model, which has remained virtually unchanged for a century, to the ground.

That is not wild-eyed hippie talk. It is the assessment of the utilities themselves.

Back in January, the Edison Electric Institute — the (typically stodgy and backward-looking) trade group of U.S. investor-owned utilities — released a report [PDF] that, as far as I can tell, went almost entirely without notice in the press. That’s a shame. It is one of the most prescient and brutally frank things I’ve ever read about the power sector. It is a rare thing to hear an industry tell the tale of its own incipient obsolescence.

I’ve been thinking about how to convey to you, normal people with healthy social lives and no time to ponder the byzantine nature of the power industry, just what a big deal the coming changes are. They are nothing short of revolutionary … but rather difficult to explain without jargon.

So, just a bit of background. You probably know that electricity is provided by utilities. Some utilities both generate electricity at power plants and provide it to customers over power lines. They are “regulated monopolies,” which means they have sole responsibility for providing power in their service areas. Some utilities have gone through deregulation; in that case, power generation is split off into its own business, while the utility’s job is to purchase power on competitive markets and provide it to customers over the grid it manages.

This complexity makes it difficult to generalize about utilities … or to discuss them without putting people to sleep. But the main thing to know is that the utility business model relies on selling power. That’s how they make their money. Here’s how it works: A utility makes a case to a public utility commission (PUC), saying “we will need to satisfy this level of demand from consumers, which means we’ll need to generate (or purchase) this much power, which means we’ll need to charge these rates.” If the PUC finds the case persuasive, it approves the rates and guarantees the utility a reasonable return on its investments in power and grid upkeep.

Thrilling, I know. The thing to remember is that it is in a utility’s financial interest to generate (or buy) and deliver as much power as possible. The higher the demand, the higher the investments, the higher the utility shareholder profits. In short, all things being equal, utilities want to sell more power. (All things are occasionally not equal, but we’ll leave those complications aside for now.)

Now, into this cozy business model enters cheap distributed solar PV, which eats away at it like acid.

First, the power generated by solar panels on residential or commercial roofs is not utility-owned or utility-purchased. From the utility’s point of view, every kilowatt-hour of rooftop solar looks like a kilowatt-hour of reduced demand for the utility’s product. Not something any business enjoys. (This is the same reason utilities are instinctively hostile to energy efficiency and demand response programs, and why they must be compelled by regulations or subsidies to create them. Utilities don’t like reduced demand!)

It’s worse than that, though. Solar power peaks at midday, which means it is strongest close to the point of highest electricity use — “peak load.” Problem is, providing power to meet peak load is where utilities make a huge chunk of their money. Peak power is the most expensive power. So when solar panels provide peak power, they aren’t just reducing demand, they’re reducing demand for the utilities’ most valuable product.

But wait. Renewables are limited by the fact they are intermittent, right? “The sun doesn’t always shine,” etc. Customers will still have to rely on grid power for the most part. Right?

This is a widely held article of faith, but EEI (of all places!) puts it to rest. (In this and all quotes that follow, “DER” means distributed energy resources, which for the most part means solar PV.)

Quote:
 
Due to the variable nature of renewable DER, there is a perception that customers will always need to remain on the grid. While we would expect customers to remain on the grid until a fully viable and economic distributed non-variable resource is available, one can imagine a day when battery storage technology or micro turbines could allow customers to be electric grid independent. To put this into perspective, who would have believed 10 years ago that traditional wire line telephone customers could economically “cut the cord?”
[Emphasis mine.]

Indeed! Just the other day, Duke Energy CEO Jim Rogers said, “If the cost of solar panels keeps coming down, installation costs come down and if they combine solar with battery technology and a power management system, then we have someone just using [the grid] for backup.” What happens if a whole bunch of customers start generating their own power and using the grid merely as backup? The EEI report warns of “irreparable damages to revenues and growth prospects” of utilities.

Utility investors are accustomed to large, long-term, reliable investments with a 30-year cost recovery — fossil fuel plants, basically. The cost of those investments, along with investments in grid maintenance and reliability, are spread by utilities across all ratepayers in a service area. What happens if a bunch of those ratepayers start reducing their demand or opting out of the grid entirely? Well, the same investments must now be spread over a smaller group of ratepayers. In other words: higher rates for those who haven’t switched to solar.

That’s how it starts. These two paragraphs from the EEI report are a remarkable description of the path to obsolescence faced by the industry:

Quote:
 
The financial implications of these threats are fairly evident. Start with the increased cost of supporting a network capable of managing and integrating distributed generation sources. Next, under most rate structures, add the decline in revenues attributed to revenues lost from sales foregone. These forces lead to increased revenues required from remaining customers … and sought through rate increases. The result of higher electricity prices and competitive threats will encourage a higher rate of DER additions, or will promote greater use of efficiency or demand-side solutions.

Increased uncertainty and risk will not be welcomed by investors, who will seek a higher return on investment and force defensive-minded investors to reduce exposure to the sector. These competitive and financial risks would likely erode credit quality. The decline in credit quality will lead to a higher cost of capital, putting further pressure on customer rates. Ultimately, capital availability will be reduced, and this will affect future investment plans. The cycle of decline has been previously witnessed in technology-disrupted sectors (such as telecommunications) and other deregulated industries (airlines).

Did you follow that? As ratepayers opt for solar panels (and other distributed energy resources like micro-turbines, batteries, smart appliances, etc.), it raises costs on other ratepayers and hurts the utility’s credit rating. As rates rise on other ratepayers, the attractiveness of solar increases, so more opt for it. Thus costs on remaining ratepayers are even further increased, the utility’s credit even further damaged. It’s a vicious, self-reinforcing cycle:

Posted Image

One implication of all this — a poorly understood implication — is that rooftop solar s up the utility model even at relatively low penetrations, because it goes straight at utilities’ main profit centers. (It’s already happening in Germany.) Right now, distributed solar PV is a relatively tiny slice of U.S. electricity, less than 1 percent. For that reason, utility investors aren’t paying much attention. “Despite the risks that a rapidly growing level of DER penetration and other disruptive challenges may impose,” EEI writes, “they are not currently being discussed by the investment community and factored into the valuation calculus reflected in the capital markets.” But that 1 percent is concentrated in a small handful of utility districts, so trouble, at least for that first set of utilities, is just over the horizon. Utility investors are sleepwalking into a maelstrom.

(“Despite all the talk about investors assessing the future in their investment evaluations,” the report notes dryly, “it is often not until revenue declines are reported that investors realize that the viability of the business is in question.” In other words, investors aren’t that smart and rational financial markets are a myth.)

Bloomberg Energy Finance forecasts 22 percent compound annual growth in all solar PV, which means that by 2020 distributed solar (which will account for about 15 percent of total PV) could reach up to 10 percent of load in certain areas. If that happens, well:

Quote:
 
Assuming a decline in load, and possibly customers served, of 10 percent due to DER with full subsidization of DER participants, the average impact on base electricity prices for non-DER participants will be a 20 percent or more increase in rates, and the ongoing rate of growth in electricity prices will double for non-DER participants (before accounting for the impact of the increased cost of serving distributed resources).

So rates would rise by 20 percent for those without solar panels. Can you imagine the political storm that would create? (There are reasons to think EEI is exaggerating this effect, but we’ll get into that in the next post.)

If nothing is done to check these trends, the U.S. electric utility as we know it could be utterly upended. The report compares utilities’ possible future to the experience of the airlines during deregulation or to the big monopoly phone companies when faced with upstart cellular technologies. In case the point wasn’t made, the report also analogizes utilities to the U.S. Postal Service, Kodak, and RIM, the maker of Blackberry devices. These are not meant to be flattering comparisons.

Remember, too, that these utilities are not Google or Facebook. They are not accustomed to a state of constant market turmoil and reinvention. This is a venerable old boys network, working very comfortably within a business model that has been around, virtually unchanged, for a century. A friggin’ century, more or less without innovation, and now they’re supposed to scramble and be all hip and new-age? Unlikely.

So what’s to be done? You won’t be surprised to hear that EEI’s prescription is mainly focused on preserving utilities and their familiar business model. But is that the best thing for electricity consumers? Is that the best thing for the climate.
LINK

So what do we owe the electric companies?

I think that, with a century of profits already, we can safely let them go the way of the buggy whip manufacturers without feeling guilty in any way.
Edited by Brewster, Jan 4 2014, 01:26 AM.
Offline Profile Quote Post Goto Top
 
Neutral
Member Avatar
Fire & Ice Senior Diplomat
[ * ]
How about Antarctica ice not melting, do you think that is good news?
Offline Profile Quote Post Goto Top
 
Mike
Member Avatar
Administrator
[ * ]
Brew,

If the conversion to green energy follows other game changing innovations, then the forecast time frame for the changeover will decrease. The planet is at a technological jumping point in every area that affects our lives, food production, transportation, utilities and your news today focuses on but one. It is difficult to keep up with the innovations.

The problem that old models have is that innovation and competition is what drive the retail and business customers. The utility companies that survive will be the companies that can pivot from one business model to another. An example is the Kodak company, the company has moved from selling cameras which have been replaced by cell phones, to announcing that they will be introducing new innovations in TV and video and displaying their offerings at the Las Vegas Consumer Electronics Trade Show that is coming up.
Offline Profile Quote Post Goto Top
 
1 user reading this topic (1 Guest and 0 Anonymous)
ZetaBoards - Free Forum Hosting
Enjoy forums? Start your own community for free.
Go to Next Page
« Previous Topic · Fire And Ice General Discussion · Next Topic »
Add Reply

Website Traffic Analysis